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A Bio-Inspired Robot With Visual Perception of
Affordances

Oscar Chang

Universidad Central de Venezuela

Abstract. We present a visual robot whose associated neural controller
develops a realistic perception of affordances. The controller uses known
insect brain principles; particularly the time stabilized sparse code com-
munication between the Antennal Lobe and the Mushroom Body. The
robot perceives the world through a webcam and canny border openCV
routines. Self-controlled neural agents process this massive raw data and
produce a time stabilized sparse version, where implicit time-space infor-
mation is encoded. Preprocessed information is relayed to a population
of neural agents specialized in cognitive activities and trained under self-
critical isolated conditions. Isolation induces an emergent behavior which
makes possible the invariant visual recognition of objects. This later ca-
pacity is assembled into cognitive strings which incorporate time-elapse
learning resources activation. By using this assembled capacity during an
extended learning period the robot finally achieves perception of affor-
dances. The system has been tested in real time with real world elements.

Keywords: Affordance Perception, Robotic Vision, Cooperative Neural
Agents

1 Introduction

Affordance is a quality of an object or environment that allows (or suggests) an
individual to perform an action [1]. The term is used in various fields including
AI, cognition, perceptual psychology, industrial design, HCI, etc. Perceiving af-
fordances has been related to infants development [2] and has opened vigorous
research movement in AI [3] , artificial vision [4] and robotics [5]. Affordance de-
mands the recognition of a class of objects (or environments) with no clear-cut
differences, with many diffuse characteristics, with arbitrary boundaries, sizes
and designations [1]. It may also trigger in the individual a complex response,
such as moving toward the object and sitting on it. To initiate or not a real action
will depend in the mediation of others agents. The execution of this excitation-
response agreement, trivial for living creatures, combines difficult problems such
as tracking and recognizing a moving object [6], the growth of cognitive abilities
[7] and the formation of agents societies [8]. In this work we present a visual
driven robot whose neural controller support expansible invariant object recog-
nition [9]. In order to extend the robots learning period this paper incorporates
a self-controlled grow algorithm in which the robot’s available learning resources
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are distributed over an extended period of time. The combination of a long edu-
cational experience and the gradual release of learning capabilities finally develop
in the robot a credible visual perception of affordances. The controller has an im-
plicit biological structure where cooperative neural agents mimic two key insect
brain elements: the antennal lobe (AL) and the Mushroom Body (MB).

2 Previous works

In previous works by Chang the following operative tools were established [9],[6]:
1) A neural artificial vision system which relies on the computer models of the AL
and MB of insects. 2) A flow of circulating information defined by time stabilized
sparse code. 3) An expansible learning capacity based upon isolated tunable
agents (ITAs). In this paper we incorporate two new elements: 1) An operative
unit called ”cognitive string”, formed by several ITAs ruled by a common time-
released learning mechanism. 2) A ”selective reward system” in which short-term
learning events are aimed at specific cognitive string.

3 The Robot and its Multi-Agent Neural Controller

The used robot has one moving eye and two final effectors (servomotors) which
handle the physical flags P and C. The robot watches the world through a two
axis moving webcam and takes as visual input different classes of untailored 2D
and 3D images (Fig 1). After training it develops affordance perception for some
specific object classes which activate the final effectors.

Fig. 1. Visual affordances perceiving robot. The robot observes the world through a
two axis moving webcam. Some images afford ”painting” and activate the effector P.
Some others afford ”cutting” and activate the effector C.

The used neural controller utilizes two key insect brain agents: the antennal
lobe (AL) and the Mushroom Body (MB) (Fig 2).In the modeled AL primary
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receptors are pixels in 100x100 a moving region of interest (ROI) image, captured
with a webcam and simplified with canny edge detection (a). These pixels feed
an ANN pre trained as a crosshair reticle tracker (b). This ANN participates in a
close loop feedback system (c) and becomes a generic tracking agent, producing
a continuous flow of space-time related unstable code (d). An averaging agent (e)
stabilizes this flow and passes a sparse version to the equivalent MB, formed by a
set of isolated tunable agents (ITAs) composed by small ANNs (f) specialized in
learning, recognition and memory formation. Through OR like operators ITAs’
output are grouped into cognitive strings (g) which finally activate the physical
effectors (h).

Fig. 2. The neural controller. A 100x100 canny image feeds a modeled Antennal lobe
(AL) which generates time stabilized sparse code. This resource is passed to an artificial
mushroom body (MB) where isolated tunable agents (ITAs) carry out cognitive duties.
ITAs are assembled into cognitive strings which finally activate the effectors.

4 The artificial AL and MB

In insects the AL converts crude sensors data to a special form of space-temporal
code essential for object recognition and relayed to the cognitive elements in the
MB [10]. In our AL a backpro trained ANN operates in a closed loop mechanism
where images from a video stream control image position [9]. This loop generates
a flow of space-time related data which is subsequently stabilized and sparsed.
The resulting time stabilized sparse code (TSSC) is relayed to cognitive agents
in the simulated MB. The insects’ MB serves as a large screen where objects can
be much more easily discriminated [10]. In our MB cognitive agents called ITAs
(Isolated Tunable Agents) are built with trainable three layers ANNs formed by
2500 inputs, 10 hidden and 5 outputs neurons. As in biology ITAs use as input
neurons the TSSC coming from the AL (2500 signals).
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5 Isolated Learning

When learning to recognize an object each ITA behaves as an auto-critical in-
dividual who uses the following learning rules: Rule 1 Look toward the outside
world. See the object for a while and use backpro to: 1a) learn to fire with the
object. 1b) partially forget what you have learned somewhere else. Rule 2 Look
inside yourself. See your own noise source for a while. Use backpro to: 2a) learn
not to fire with noise. 2b) partially forget what you have learned somewhere
else. Using these rules a reward R is defined as a short term learning experience
during which one selected ITA receives 100 consecutive backpro cycles watch-
ing the chosen object followed by 100 cycles watching white noise. Targets are
properly set so that ITA’s central output neuron learns to fire with the object
and not to fire with noise. At 50 frames/sec a reward lasts 4 seconds and about
5 rewards are needed to memorize one object. Rewards shall not exceed a maxi-
mum number or the affected ITA will be degraded (overexposure). When trained
under the above principles an ITA shows an emergent capacity to discriminate
the learned object from many others, while absorbing a finite quantity (roughly
20%) of visual variances and white noise.

6 The time-released learning resources

Our next goal is to expand the number of ITAs dedicated to the learning of one
object so that class recognition is attained. To this end ITAs are assembled into
cognitive strings S1, S2,... Sn formed by m by consecutive ITAs numbered from 1
to m. To avoid overexposure a self-controlled time-released mechanism operates
in each string distributing the received rewards as: The firs active ITA is the
number 1. At any given time only the active ITA in the string receives rewards.
Every active ITA i, which receives 15 (or so) consecutive rewards freezes its
weight information and passes the active condition to the i+1 ITA. Once trained
and for recognition purposes the ITAs’ outputs in the same string are ”ored”
together. A selective reward Ri is now defined as a reward that only affects
the active ITA in the cognitive string Si. This seletive norm make possible to
dedicate a whole string to the invariant recognition of one object thus expanding
object recognition into class recognition.

7 Results

7.1 Experiment 1

The Emergence of Affordance Perception. In this experiment the robot develops
perception of affordance for two classes of objects: class P represented by brushes
which afford ”painting” and class C represented by scissors which afford ”cut-
ting”. These classes were chosen because physical samples of them were readily
available and because they both represent difficult to recognize items, very sen-
sitive to rotational translation. Two cognitive strings SP and SC in the MB are
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selected to develop affordances for painting (brushes) and cutting (scissors) re-
spectively. Once trained the robot demonstrates its perceptions by activating
its final effectors P and C. Each string comprises 20 ITAs which cover the ro-
tational image variances of one full rotation per object. For training a human
places objects (scissor or brushes) in the robot field of view and sends selective
rewards RP or RS aimed at the respective strings. Since each trained ITA ab-
sorbs about 20 degrees of object rotation, 20 of them cover a full turn. In figure
3 (upper right) two trained ITAs process original images turned into canny im-
ages and TSSC. Time stabilized sparse features have been created in the ITAs’
hidden layer (weights of one hidden neuron are shown). Using a Pentium Core
i5 the learning time is about 8 minutes. Once trained the robot visually scans
the shown landscape (left) and after three minutes correctly perceives the eight
existing affordances. Some image zooming is tolerated and look alike objects
such as pliers and relays are rejected.

Fig. 3. Affordance perception for multiple object visualization

7.2 Experiment 2

A non-easily distractible eye. To test the consistency of its perception of affor-
dance the above trained robot is set to explore the whole Caltech 101 Object
Categories data set. After examining the 9146 images in 5 hours the robot re-
ports the 9 mistaken, look-alike elements shown in figure 4. It also recognizes 31
out of 39 true affordances in the ”scissor” category.

8 Discussion and Conclusions

The robot shows a robust affordance perception capacity. For the whole Caltech
dataset the error is limited to 0.098 %. More ITAs per cognitive string can be
used as to cover full tilting and zooming for each desired affordance. A credible
perception of affordance appears only after a prolonged learning period, which
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Fig. 4. Searching for affordances in the 101 ObjectCategories Caltech dataset

in turn requires a space-time distribution of learning resources prepacked in
cognitive strings. The used learning and feed forward mechanisms have a natural
parallel structure so high speed operation could be expected when using parallel
computing. We have developed and tested a robotic vision system capable of
showing clear relations between affordances and perception-action under broad
visual conditions. The proposed neural controller uses cooperative neural agents
organized as the artificial versions of the AL and MB of living insects. In the
proposed MB basic cognitive agents called ITAs, sensitive to short term learning
experiences, are assembled into operative modules called cognitive strings. Inside
the strings orderly activated ITAs store time stabilized sparse features of selected
objects. The combination of a prolonged educational experience, time-elapse
release of learning resources and the time stabilized sparse feature extraction
finally develops in the robot a credible form of visual affordance perception.
In extended images search the neural visual controller shows a good rejection
of false affordances. This may be relevant for constructing efficient, no easily
distractible robots. In principle the proposed techniques can expanded to higher
pixel resolution and many affordance perceptions.
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